منابع مشابه
Beyond Degree Choosability
Let G be a connected graph with maximum degree ∆. Brooks’ theorem states that G has a ∆-coloring unless G is a complete graph or an odd cycle. A graph G is degree-choosable if G can be properly colored from its lists whenever each vertex v gets a list of d(v) colors. In the context of list coloring, Brooks’ theorem can be strengthened to the following. Every connected graph G is degree-choosabl...
متن کاملCircular Degree Choosability
We extend a characterization of degree-choosable graphs due to Borodin [1], and Erdős, Rubin and Taylor [2], to circular list-colorings.
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملAcyclic Choosability of Graphs with Small Maximum Degree
A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be acyclically k-...
متن کاملImproper choosability of graphs and maximum average degree
Improper choosability of planar graphs has been widely studied. In particular, Škrekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k-improper 2-choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6 and ∀k ≥ 4, gk = 5. In this paper, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2017
ISSN: 1077-8926
DOI: 10.37236/6179